首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1080篇
  免费   101篇
  国内免费   288篇
安全科学   92篇
废物处理   18篇
环保管理   256篇
综合类   562篇
基础理论   141篇
污染及防治   264篇
评价与监测   53篇
社会与环境   70篇
灾害及防治   13篇
  2024年   1篇
  2023年   26篇
  2022年   49篇
  2021年   50篇
  2020年   40篇
  2019年   44篇
  2018年   33篇
  2017年   50篇
  2016年   47篇
  2015年   52篇
  2014年   61篇
  2013年   73篇
  2012年   74篇
  2011年   77篇
  2010年   52篇
  2009年   86篇
  2008年   62篇
  2007年   69篇
  2006年   72篇
  2005年   51篇
  2004年   61篇
  2003年   32篇
  2002年   36篇
  2001年   57篇
  2000年   40篇
  1999年   23篇
  1998年   34篇
  1997年   25篇
  1996年   13篇
  1995年   8篇
  1994年   8篇
  1993年   11篇
  1992年   9篇
  1991年   2篇
  1990年   4篇
  1989年   2篇
  1988年   1篇
  1987年   6篇
  1986年   1篇
  1985年   6篇
  1984年   2篇
  1982年   3篇
  1981年   5篇
  1980年   3篇
  1979年   4篇
  1978年   2篇
  1972年   2篇
排序方式: 共有1469条查询结果,搜索用时 572 毫秒
961.
Geochemistry plays an important role when assessing the impact of CO2 storage. Due to the potential corrosive character of CO2, it might affect the chemical and physical properties of the wells, the reservoir and its surroundings and increase the environmental and financial risk of CO2 storage projects in deep geological structures. An overview of geochemical and solute transport modelling for CO2 storage purposes is given, its data requirements and gaps are highlighted, and its progress over the last 10 years is discussed. Four different application domains are identified: long-term integrity modelling, injectivity modelling, well integrity modelling and experimental modelling and their current state of the art is discussed. One of the major gaps remaining is the lack of basic thermodynamical and kinetic data at relevant temperature and pressure conditions for each of these four application domains. Real challenges are the coupled solute transport and geomechanical modelling, the modelling of impurities in the CO2 stream and pore-scale modelling applications.  相似文献   
962.
Characteristics of two serious air pollution episodes(9–15 January, as the winter case; and30 June to 1 July, as the summer case), which occurred in Beijing in 2013 were investigated and compared using multi-method observations and numerical simulations. During these two air pollution episodes, PM_(2.5) concentrations varied significantly within Beijing, with PM_(2.5) concentrations in southern parts of Beijing being significantly higher than in northern areas. Typically, heavy air pollution episodes begin in the southern parts and disperse towards the northern parts of Beijing. Clearly, synoptic patterns and the stability of atmospheric circulation patterns were the main factors controlling air pollution in Beijing.During the winter case, a warm center above 900 h Pa occurred over Beijing. Meanwhile, in the summer case, although there was only a weak inversion, the convective inhibition energy was strong(over 200 J/k G). This clearly influenced the duration of the air pollution event. Except for the local accumulation and secondary atmospheric reactions in both cases, regional straw burnings contributed a lot to the PM_(2.5) concentrations in summer case.Using the CAMxmodel, we established that regional transport contributed almost 59% to the PM_(2.5) averaged concentration in Beijing in the winter case, but only 31% in the summer case. Thus, the winter case was a typical regional air pollution episode, while the summer case resulted from local accumulation straw burnings transportation and strong secondary atmospheric reactions. Given that air pollution is a regional problem in China, consistent and simultaneous implementation of regional prevention and control strategies is necessary to improve regional air quality.  相似文献   
963.
A popular method for the treatment of aquifers contaminated with chlorinated solvents is chemical oxidation based on the injection of potassium permanganate (KMnO4). Both the high density (1025 gL− 1) and reactivity of the treatment solution influence the fate of permanganate (MnO4) in the subsurface and affect the degree of contaminant treatment. The MIN3P multicomponent reactive transport code was enhanced to simulate permanganate-based remediation, to evaluate the pathways of MnO4 utilization, and to assess the role of density contrasts for the delivery of the treatment solution. The modified code (MIN3P-D) provides a direct coupling between density-dependent fluid flow, solute transport, contaminant treatment, and geochemical reactions. The model is used to simulate a field trial of TCE oxidation in a sandy aquifer that is underlain by an aquitard. Three-dimensional simulations are conducted for a coupled reactive system comprised of ten aqueous components, two mineral phases, TCE (dissolved, adsorbed, and NAPL), reactive organic matter, and including ion exchange reactions. Model parameters are constrained by literature data and a detailed data set from the field site under investigation. The general spatial and transient evolution in observed concentrations of the oxidant, dissolved TCE, and reaction products are adequately reproduced by the simulations. The model elucidates the important role of density-induced flow and transport on the distribution of the treatment solution into NAPL containing regions located at the aquifer–aquitard interface. Model results further suggest that reactions that do not directly affect the stability of MnO4 have a negligible effect on solution density and MnO4 delivery.  相似文献   
964.
The migration behavior of U(IV) and U(VI) in the presence of humic acid was studied in a quartz sand system. Laboratory column experiments were performed using humic acid, U(VI) in humic acid absence, U(IV) and U(VI) in humic acid presence, and for comparison a conservative tracer. In experiments using humic acid, both redox species of U migrate nearly as fast as the conservative tracer. Humic acid accelerates the U(VI) breakthrough compared to the humic acid-free system. There are strong indications for a similar effect on the U(IV) transport. At the same time, a part of U(IV) and U(VI) associated with the humic acid is immobilized in the quartz sand due to humic colloid filtration thus producing a delaying effect. Tailing at a low concentration level was observed upon tracer elution. The experimental breakthrough curves were described by reactive transport modeling using equations for equilibrium and kinetic reactions. The present study demonstrates that humic acids can play an important role in the migration of actinides. As natural organic matter is ubiquitous in aquifer systems, the humic colloid-borne transport of actinides is of high relevance in performance assessment.  相似文献   
965.
Polychlorinated biphenyls (PCBs) were measured in sediment cores from ponds located near a large seabird colony at Cape Vera, Devon Island, Arctic Canada. Surface sediment PCB concentrations were ∼5× greater in seabird-affected sites relative to a nearby control pond and were correlated with independent indicators of seabird activity including, sedimentary δ15N and lakewater chlorophyll a and cadmium concentrations. PCB fluxes were amongst the highest recorded from the High Arctic, ranging from 290 to 2400 ng m−2 yr−1. Despite a widespread ban of PCBs in the mid-1970s, PCB accumulation rates in our cores increased, with the highest values recorded in the most recent sediments. Possible mechanisms for the recent PCB increases include a vertical flux step driven by seabird-delivered nutrients and/or delayed loading of PCBs from the catchment into the ponds. The high PCB levels recorded in the seabird-affected sites suggest that seabird colonies are exposing coastal ecosystems to elevated levels of contaminants.  相似文献   
966.
A successful application of reaction transport algorithms to calculate the chemical evolution of natural systems requires accurate methods to compute the rates of mineral/fluid surface reactions. Regarding the transport of radio-nuclides in mining dumps the dissolution of minerals is of special importance. Using a kinetic rate law of the mineral dissolution verified for unsaturated conditions will allow a realistic modelling of the mineral weathering in the environment. Dissolution rates of minerals in an aqueous solution are determined by several characteristics. These are surface reaction rates, morphology of the mineral's surface and, in case it is the unsaturated zone, the degree of the water saturation. For this process, the quantity of the particle surfaces which are in contact with percolating water is most decisive. In order to study the differences of mineral dissolution under saturated and unsaturated conditions batch and column experiments were carried out with a pyrite-calcite mixture. The experimental results were verified by calculations. Comparing the dissolution in batch with those in the column experiment, which was performed with a water flow velocity of 0.64 cm/day and was analyzed in the region of a water saturation of 0.11, one can conclude that only a small portion of about 5% of the grain surface is chemically reactive in this unsaturated flow.  相似文献   
967.
Packed column and mathematical modeling studies were conducted to explore the influence of water saturation, pore-water ionic strength, and grain size on the transport of latex microspheres (1.1 microm) in porous media. Experiments were carried out under chemically unfavorable conditions for colloid attachment to both solid-water interfaces (SWI) and air-water interfaces (AWI) using negatively charged and hydrophilic colloids and modifying the solution chemistry with a bicarbonate buffer to pH 10. Interaction energy calculations and complementary batch experiments were conducted and demonstrated that partitioning of colloids to the SWI and AWI was insignificant across the range of the ionic strengths considered. The breakthrough curve and final deposition profile were measured in each experiment indicating colloid retention was highly dependent on the suspension ionic strength, water content, and sand grain size. In contrast to conventional filtration theory, most colloids were found deposited close to the column inlet, and hyper-exponential deposition profiles were observed. A mathematical model, accounting for time- and depth-dependent straining, produced a reasonably good fit for both the breakthrough curves and final deposition profiles. Experimental and modeling results suggest that straining--the retention of colloids in low velocity regions of porous media such as grain junctions--was the primary mechanism of colloid retention under both saturated and unsaturated conditions. The extent of stagnant regions of flow within the pore structure is enhanced with decreasing water content, leading to a greater amount of retention. Ionic strength also contributes to straining, because the number of colloids that are held in the secondary energy minimum increases with ionic strength. These weakly associated colloids are prone to be translated to stagnation regions formed at grain-grain junctions, the solid-water-air triple point, and dead-end pores and then becoming trapped.  相似文献   
968.
The impact of long-range transport of yellow sand from Asian Continent to the Taipei Metropolitan Area (Taipei) not only deteriorates air quality but also poses health risks to all, especially the children and the elderly. As such, it is important to assess the enhancement of PM10 during yellow sand periods. In order to estimate PM10 enhancement, we adopted factor analysis to distinguish the yellow-sand (YS) periods from non-yellow-sand (NYS) periods based on air quality monitoring records. Eight YS events were identified using factor analysis coupling with an independent validation procedure by checking background site values, examining meteorological conditions, and modeling air mass trajectory from January 2001 to May 2001. The duration of each event varied from 11 to 132 h, which was identified from the time when the PM10 level was high, and the CO and NO x levels were low. Subsequently, we used the artificial neural network (ANN) to simulate local PM10 levels from related parameters including local gas pollutants and meteorological factors during the NYS periods. The PM10 enhancement during the YS periods is then calculated by subtracting the simulated PM10 from the observed PM10 levels. Based on our calculations, the PM10 enhancement in the maximum hour of each event ranged from 51 to 82%. Moreover, in the eight events identified in 2001, it was estimated that a total amount of 7,210 tons of PM10 were transported by yellow sand to Taipei. Thus, in this study, we demonstrate that an integration of factor analysis with ANN model could provide a very useful method in identifying YS periods and in determining PM10 enhancement caused by yellow sand.  相似文献   
969.
Propagation of the oil spilling from a damaged oil tanker is considered in a limited sea area. The accident consequences are evaluated by means of direct and adjoint oil concentration estimates in ecologically sensitive zones. While the direct estimates are preferable to get a comprehensive idea of the oil spill impact on the whole area, the adjoint ones are useful and economical in studying the sensitivity of the oil concentration in some zones to variations in the accident site and oil spill rate from the tanker. Thanks to special boundary conditions set at the inflow and outflow parts of the open boundary, the main and adjoint oil transport problems are both well-posed according to Hadamard (1923). The estimates obtained in Skiba (1996a) are generalized to the three dimensions. Balanced, absolutely stable 2nd-order finite-difference schemes based on the splitting method are constructed for the two- and three-dimensional cases, both. The main and adjoint schemes are compatible in the sense that at every fractional step of the splitting algorithm, the one-dimensional split operators of both the schemes satisfy a discrete form of the Lagrange identity (Marchuk, 1995). In the special unforced and non-dissipative case, the schemes have two conservation laws each. Each split problem is solved by the factorization method.  相似文献   
970.
The study of atmospheric polycyclic aromatic hydrocarbons (PAHs) in northeastern Tibetan Plateau with fragile ecological environment and complex atmospheric circulation system is blank. To understand the characteristics and sources of persistent organic pollutants in the atmosphere of the northeastern Tibetan Plateau, we monitored levels in the central Qilian Mountain. From 2016 to 2017, we collected 45-pair (particle + gas) samples using active air samplers to investigate the sources, transport paths, and their influencing factors. Sources of PAHs were analysed with a source diagnostic model, and atmospheric transport paths were calculated. The concentration range for ∑15PAHs was 439–4666 pg/m3, and the average was 2015 pg/m3. The PAHs in central Qilian Mountain are mainly low molecular weight (LMW) PAHs. Winter concentrations of PAHs were higher than those in summer. The transport of PAHs is mainly affected by westerlies, and there are seasonal differences. Source analysis showed that PAHs mainly came from coal and biomass combustion and vehicle emissions, with seasonal differences. This study clarifies the concentration and seasonal variation of PAHs in the northern Tibetan Plateau, which is conducive to understanding the atmospheric transport process and fate of pollutants. The background site of Qilian Mountains located in the Silk Road economic belt has the value and significance of long-term observation of pollutants.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号